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Quantitative description and modeling of real networks
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We present data analysis and modeling of two particular cases of study in the field of growing networks. We
analyze World Wide Web data set and authorship collaboration networks in order to check the presence of
correlation in the data. The results are reproduced with good agreement through a suitable modification of the
standard Albert-Baralsa model of network growth. In particular, intrinsic relevance of sites plays a role in
determining the future degree of the vertex.
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The fractal properties of social networks have beerputed considering each link as if it was undirected, and pos-
largely investigated by the statistical mechanics communitysible double edge@wo nodes could have mutual hyperlinks
in recent times. Many quantities have been recognized agre considered as a single undirected link as well. We have
“signatures” of complexity in such networks. In particular, adopted this technique to measure bkth(k) andcy for a
the probability distribution of the degree of the nodes in asnapshot of the WWW and for the network of scientific col-
social network displays an algebraic decay in several differlaborations taken from an online datab§8k finding, for the
ent realizations, including the Internet, the World Wide WebWWW, qualitatively the same results as in the 1Ashdi-
(WWW), the movie actors network, and the science collabotected case studied in Ref$6,7]. Using standard noise re-
ration network[1—4]. Since then, many models have beenducing data analysis techniques we find thai(k) ~k%'®
developed in order to reproduce this particular feature of redor largek, as shown in Fig. 1, and,~k™ %% see Fig. 2.
networks[3,5]. This behavior is in good agreement with the power laws
Properties beyond the degree distribution have also beelound in the IAS case€[6,7], though the exponents are
analyzed: In the internet autonomous systéiAS) network,  slightly different[their measurements, which are affected by
the relation between the degree of a nédand the average a weaker noise, yieldk,n(k)~k™ %% and c,~k %™9. The
degree of its neighbots,,(k) has been measured, showing alAS and WWW are therefore examples of scale-free net-
decaying behavior ok, ,(k) for large k; such property is works showing disassortative mixing. The basic model used
connected to a hierarchical structure of the growth procest® describe scale-free networks, namely, the Albert-Baiaba
[6,7]. From a more general point of view, it has been shownmodel[3], which is based on the “preferential attachment”
that a taxonomy of social networks can be made according tonechanism, gives networks essentially devoid of correla-
the correlation between the degrees of directly connectetions: k,,(k) andcy are roughly independent &f quite dif-
nodes[9]. In networks displaying “assortativédisassorta- ferently from what is shown in Ref$6,7] and again in this
tive) mixing,” the correlation is positivenegative, which  work. According to the preferential attachment mechanism,
corresponds to an increasin@ decreasing behavior of the probability to draw an edge between a new node and an
Knn(K). already existing one is proportional to the degree of the lat-
Furthermore, a growing number of studies have investi-
gated the clustering properties of social networks, that is, the
presence and the abundance of groups of nodes having a
strong internal connectivity. In particular, the monitored
guantity for a node of degrdeis the clustering coefficiert
that is the average number of edges between nearest neigh- 100
bors of a node of degrele normalized with respect to the Kk
largest possible number of such linkgk—1)/2 (the aver-
age is taken over the whole netwarkVith this definition,
the clustering coefficient is a number between 0 and 1. Re-
cent surveys on 1A$6,7] have measured the clustering co- 10F %
efficient ¢, around nodes of degréde These empirical stud- A
ies show a decaying behavior of with respect tok, as in ] % 5 1530 10000
the case ok,,(k). In order to analyze directed graphs, such
as the WWW(where the edges of the network are the hyper-
links that are clearly not undirectgdlifferent recipes can be FIG. 1. Average degrek, (k) of nearest neighbors of a node
applied. In principle one could explicitly consider the differ- with degreek, as a function ok. Triangles refer to the actor col-
ence between in-going and out-going links. More simply, thelaboration network, plus symbols refer to the WWW empirical sur-
clustering coefficient for directed networks is often com-vey (10-points averagedand circles to simulations of our model.
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1+ riki(t)
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Cy where(- - -), denotes the average over all the realizations of
ri. In the following, we will neglect the explicit time depen-
0.01 dence whenever unnecessary. We can write a rate equation
for the degree, following the reasoning made in R&#]:
mr;k;(t)
00013 10 1&0 1000 10000 k=7 )
< 2> ks<t>>
FIG. 2. Clustering coefficient, around a node of degréeas a Sifs= Mt r

function ofk. Circles refer to the actor collaboration network, plus ) ) ) )
symbols refer to the WWW empirical survé0-points averagéd ~ TO evaluate the denominator in the right-hand side of the

and squares to the simulation of our model. above equation, we have to compute
1t-1 .
. . . . . I
ter. The information use_d to decide about connections is < > ks(t)> :f drA(r,,t), ®)
therefore purely topological. In real networks, rather, the Sirs>Ty ' 0

choice to establish a connection depends also on some other

properties of the involved nodes. For example, social netwhere we defined the decreasing funtiorr pf
works showing assortative mixing typically describe systems
where a mutual consent to establish the link is needed, like in A D= S kD) @
author collaboration networks and actor netwofkbere the t sicr, o

further external intervention of the actors’ agents and of the

film producer is important For the WWW, which shows SinceA(0, t)=2mt andA(1,t)=0, we assume the ansatz
disassortative mixing, we expect that the probability that aA(r,t)=2mt(1—r) for the functional form ofA(r,,t), for
newcomer node connects to an older one does not depemdarge enough. By this ansatz, we can compute the right-
only on the degree of the latter, but also on its intrinsic quali-hand side of Eq(3),

ties.

To check if our hypothesis is true, we introduce a growing
undirected network model. Sites are added at a discrete pace,
and each site has an intrinsic “relevance,” which is a random
variable drawn from a uniform distribution in the randk1] where
(models where intrinsic node variables determine the struc-
ture of a network have recently been introdu¢&d]). In our
interpretation, a link is the relevance attributed to the pointed
node, in the spirit of Refg.11-13. In the WWW, for ex-
ample, a relevant web page rarely points to a nonrelevantherefore, the solution of the rate EQ) is
one, suggesting a relevance-driven connectivity concentra-
tion. To implement such a policy, in our model a node added
at timet with a relevance; can be connected only to nodes
having a relevance higher than, with linear preferential
attachment: the probability of acquiring a new link is propor-for the time evolution of the degree, following the same rea-
tional to the actual degree. soning as in Refl3].

This implies that an existing nodewith a relevance; Let us now callK(r,t)dr the sum of the degrees of the
and degree Kk; has a probability p;=0(r; nodes with relevance betweemndr +dr, at timet. At each
_rt)ki/[Etszlks®(rs_rt)] of acquiring a new link, where time step,dr nodes on average are introduced with such a
O(x)=1 for x>0 and®(x)=0 otherwise. Finally, we as- relevance. Equatio(v) gives us the degree acquired by each
sume that a newly added node is connectedntexisting  Of these nodes. To obtaik(r,t) we have to sum over all
nodes according to the described rule. time steps from 1 ta, and we get

Let us callk;(t) the degree at timé of the nodei intro-
duced at timei, whose relevance ig;. At each time step,
there is a probability; that the newly introduced node has a
relevancer,<r;, sincer, is drawn from a uniform distribu-
tion between 0 and 1. Then, the probability of increasing byApproximating the sum by an integral, and replackgt)
1 the degred;(r;,t) is approximately given by by Eq.(7), we get

1t—-1

f”drtA(rt,t)=2mtriC(ri), ®)
0

a

C(r)=1 (6)

Clta

t\ ri/[2c(ri]
) (7)

ki(t)=m<i—

t

drK(r,t)=dr§l ke(t). (8)
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is such thaf;(r)<F(r) for 0<r<1. Then if we extend the
integral fromr, [Fq(r,)=0] to 1, we surely find an under-
estimation forP(k). In particular we find

P(k)>k7(3a+l)/(a+l) 1 (15)

2a
a+1

In(k/2)—1

The asymptotic behavior d?(k) is thereforek (3¢ 1(@*1)
with at most logarithmic corrections.

We numerically checked th&(k) is a power law with a
rather weak correction that slows down the decay, as dis-
played in Fig. 3. Neglecting the correction, the best approxi-
mating exponent of the probability density functiPDF) is

FIG. 3. Degree of PDF in our network model made of' 10 about —2.16, which confirms the above computation. In-
nodes, withm=2. Plus symbols refer to numerical simulation. The deed, we have (@+1)/(a+1)=2.16. This value, more-

solid line is obtained by plotting Eq11). The dashed line is pro-
portional tok™ 218 Inset: the functiorf A(x,t)]/(2mt) plotted for
t=10" andm=2. The dashed line represents®, displayed here
to check the validity of our ansatz.

mt
1 r
2C(ry)

K(r,t)= 9

We can estimatex by integratingK(r,t) over all r, thus
obtaining the total sum of the nodes’ degrees:

fldrK(r,t)=2mt. (10
0

This equation can be numerically shown to yield
=1.3837. The ansatz oi(r,,t) is verified in simulations of
the model, as shown in Fig. 3

Following Ref.[14], the time evolution of the individual

over, is close to the exponents measured in real networks,
which lie in the range 2-2.4.

In the simulation of the modek,,(k) andc, have also
been numerically investigated. Unfortunately, we could not
find an analytical description of these two quantities. As re-
quired by real datak,,(k) andc, decay algebraically with
respect tok. For the nearest-neighbors degree, we approxi-
mately measured,,(k)=k %% as shown in Fig. 1. The
value of the exponent agrees with the measurement reported
in Refs. [6,7], which yields k,,(k)=k™ " with »,=0.5
+0.1. As for the clustering coefficierd,, simulations re-
ported in Fig. 2 show that,=k %2 The same relation,
measured in Refg6,7], in the IAS networks case, readg
=k~ with ©=0.75+0.03.

The qualitative behavior of these quantities is reproduced
in our extremely simple model. As a comparison, let us recall
that, without an intrinsic relevance, a simple growing net-
work model with preferential attachment shows no correla-
tion between the degrees of two linked nodes. In addition, in

degrees allows us to compute their statistical distributiorthis model the clustering coefficient around a node does not

P(k); we obtain

1

1
P(k):Efo dr

whereB(r) = (2/r)[1— (r%/1+ «)], which displays a power-

k\ —B(r)
5) B(r),

(11)

depend on the degree of the ndde9]. An improvement in
approximating real data could be achieved by adding other
microscopic interactions to the dynamics of our toy model,
such as rewiring and elimination and links, or by merging
nodes, as already done in former wofk§-17 in the search

for a better approximation of the scale-free degree distribu-

law behavior for largek. We can estimate the power-law fon:

exponent of the degree distributid?(k) finding upper and

We believe that our analysis has pointed out some key

lower bounds for its integral expression. Indeed, we find thaptructural features of social networks, by the observation of

F(r):e—Z In(k/2)B(r)B(r) (12)

the correlation and the clustering of the connectivity in net-
works. In particular, the nontrivial behavior of the nearest-
neighbor average degree and of the connectivity coefficient

is such that the integrand is monotonically growing. There-have been measured in some real examples. We also pro-

fore it is easily seen that

1
P(k) <Ee_2 |n(k/2)B(l)B( 1)~ k—(3a+ 1)/ (a+ 1). (13)

vided a toy model of a growing network with preferential
attachment, where nodes only connect to more relevant ones.
We have shown numerically and analytically, as far as we
could, that our model reproduces to a good approximation
the statistical properties of real networks, including the cor-

As for the lower bound, we first observe that the integrand igelations in the connectivity. We believe that this approach
monotonically increasing, with positive second derivative.suggests new empirical measurements to be carried out on

So,

Fi(r)=F(1)-F'(1)(1-r) (14

real networks, and that new ingredients and further analytical
steps are needed toward the comprehension of these complex
systems.
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