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Quantitative description and modeling of real networks
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We present data analysis and modeling of two particular cases of study in the field of growing networks. We
analyze World Wide Web data set and authorship collaboration networks in order to check the presence of
correlation in the data. The results are reproduced with good agreement through a suitable modification of the
standard Albert-Baraba´si model of network growth. In particular, intrinsic relevance of sites plays a role in
determining the future degree of the vertex.
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The fractal properties of social networks have be
largely investigated by the statistical mechanics commu
in recent times. Many quantities have been recognized
‘‘signatures’’ of complexity in such networks. In particula
the probability distribution of the degree of the nodes in
social network displays an algebraic decay in several dif
ent realizations, including the Internet, the World Wide W
~WWW!, the movie actors network, and the science colla
ration network@1–4#. Since then, many models have be
developed in order to reproduce this particular feature of
networks@3,5#.

Properties beyond the degree distribution have also b
analyzed: In the internet autonomous systems~IAS! network,
the relation between the degree of a nodek and the average
degree of its neighborsknn(k) has been measured, showing
decaying behavior ofknn(k) for large k; such property is
connected to a hierarchical structure of the growth proc
@6,7#. From a more general point of view, it has been sho
that a taxonomy of social networks can be made accordin
the correlation between the degrees of directly connec
nodes@9#. In networks displaying ‘‘assortative~disassorta-
tive! mixing,’’ the correlation is positive~negative!, which
corresponds to an increasing~a decreasing! behavior of
knn(k).

Furthermore, a growing number of studies have inve
gated the clustering properties of social networks, that is,
presence and the abundance of groups of nodes havi
strong internal connectivity. In particular, the monitor
quantity for a node of degreek is the clustering coefficientck
that is the average number of edges between nearest n
bors of a node of degreek normalized with respect to th
largest possible number of such links,k(k21)/2 ~the aver-
age is taken over the whole network!. With this definition,
the clustering coefficient is a number between 0 and 1.
cent surveys on IAS@6,7# have measured the clustering c
efficient ck around nodes of degreek. These empirical stud
ies show a decaying behavior ofck with respect tok, as in
the case ofknn(k). In order to analyze directed graphs, su
as the WWW~where the edges of the network are the hyp
links that are clearly not undirected!, different recipes can be
applied. In principle one could explicitly consider the diffe
ence between in-going and out-going links. More simply,
clustering coefficient for directed networks is often co
1063-651X/2003/68~4!/047101~4!/$20.00 68 0471
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puted considering each link as if it was undirected, and p
sible double edges~two nodes could have mutual hyperlink!
are considered as a single undirected link as well. We h
adopted this technique to measure bothknn(k) andck for a
snapshot of the WWW and for the network of scientific co
laborations taken from an online database@8#, finding, for the
WWW, qualitatively the same results as in the IAS~undi-
rected! case studied in Refs.@6,7#. Using standard noise re
ducing data analysis techniques we find thatknn(k);k20.76

for large k, as shown in Fig. 1, andck;k21.03, see Fig. 2.
This behavior is in good agreement with the power la
found in the IAS case@6,7#, though the exponents ar
slightly different@their measurements, which are affected
a weaker noise, yieldknn(k);k20.5 and ck;k20.75]. The
IAS and WWW are therefore examples of scale-free n
works showing disassortative mixing. The basic model u
to describe scale-free networks, namely, the Albert-Barab´si
model @3#, which is based on the ‘‘preferential attachmen
mechanism, gives networks essentially devoid of corre
tions: knn(k) andck are roughly independent ofk, quite dif-
ferently from what is shown in Refs.@6,7# and again in this
work. According to the preferential attachment mechanis
the probability to draw an edge between a new node and
already existing one is proportional to the degree of the

FIG. 1. Average degreeknn(k) of nearest neighbors of a nod
with degreek, as a function ofk. Triangles refer to the actor col
laboration network, plus symbols refer to the WWW empirical s
vey ~10-points averaged!, and circles to simulations of our model
©2003 The American Physical Society01-1
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ter. The information used to decide about connections
therefore purely topological. In real networks, rather, t
choice to establish a connection depends also on some
properties of the involved nodes. For example, social n
works showing assortative mixing typically describe syste
where a mutual consent to establish the link is needed, lik
author collaboration networks and actor networks~where the
further external intervention of the actors’ agents and of
film producer is important!. For the WWW, which shows
disassortative mixing, we expect that the probability tha
newcomer node connects to an older one does not de
only on the degree of the latter, but also on its intrinsic qu
ties.

To check if our hypothesis is true, we introduce a growi
undirected network model. Sites are added at a discrete p
and each site has an intrinsic ‘‘relevance,’’ which is a rand
variable drawn from a uniform distribution in the range@0,1#
~models where intrinsic node variables determine the st
ture of a network have recently been introduced@10#!. In our
interpretation, a link is the relevance attributed to the poin
node, in the spirit of Refs.@11–13#. In the WWW, for ex-
ample, a relevant web page rarely points to a nonrelev
one, suggesting a relevance-driven connectivity concen
tion. To implement such a policy, in our model a node add
at time t with a relevancer t can be connected only to node
having a relevance higher thanr t , with linear preferential
attachment: the probability of acquiring a new link is propo
tional to the actual degree.

This implies that an existing nodei with a relevancer i
and degree ki has a probability pi5Q(r i

2r t)ki /@(s51
t ksQ(r s2r t)# of acquiring a new link, where

Q(x)51 for x.0 andQ(x)50 otherwise. Finally, we as
sume that a newly added node is connected tom existing
nodes according to the described rule.

Let us callki(t) the degree at timet of the nodei intro-
duced at timei, whose relevance isr i . At each time step,
there is a probabilityr i that the newly introduced node has
relevancer t,r i , sincer t is drawn from a uniform distribu-
tion between 0 and 1. Then, the probability of increasing
1 the degreeki(r i ,t) is approximately given by

FIG. 2. Clustering coefficientck around a node of degreek as a
function of k. Circles refer to the actor collaboration network, pl
symbols refer to the WWW empirical survey~10-points averaged!,
and squares to the simulation of our model.
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^pi& r t
.

r iki~ t !

K (
s:r s.r t

1,t21

ks~ t !L
r t

, ~1!

where^•••& r t
denotes the average over all the realizations

r t . In the following, we will neglect the explicit time depen
dence whenever unnecessary. We can write a rate equ
for the degree, following the reasoning made in Ref.@14#:

k̇i5
mriki~ t !

K (
s:r s.r t

1,t21

ks~ t !L
r t

. ~2!

To evaluate the denominator in the right-hand side of
above equation, we have to compute

K (
s:r s.r t

1,t21

ks~ t !L
r t

5E
0

r i
drtA~r t ,t !, ~3!

where we defined the decreasing funtion ofr t :

A~r t ,t !5 (
s:r s.r t

1,t21

ks~ t !. ~4!

SinceA(0, t)52mt and A(1, t)50, we assume the ansa
A(r t ,t)52mt(12r t

a) for the functional form ofA(r t ,t), for
t large enough. By this ansatz, we can compute the rig
hand side of Eq.~3!,

E
0

r i
drtA~r t ,t !52mtriC~r i !, ~5!

where

C~r !512
r a

11a
. ~6!

Therefore, the solution of the rate Eq.~2! is

ki~ t !5mS t

i D
r i /[2C(r i )]

~7!

for the time evolution of the degree, following the same re
soning as in Ref.@3#.

Let us now callK(r ,t)dr the sum of the degrees of th
nodes with relevance betweenr andr 1dr, at timet. At each
time step,dr nodes on average are introduced with such
relevance. Equation~7! gives us the degree acquired by ea
of these nodes. To obtainK(r ,t) we have to sum over al
time steps from 1 tot, and we get

drK~r ,t !5dr(
s51

t

ks~ t !. ~8!

Approximating the sum by an integral, and replacingks(t)
by Eq. ~7!, we get
1-2
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K~r ,t !5
mt

12
r

2C~r s!

. ~9!

We can estimatea by integratingK(r ,t) over all r, thus
obtaining the total sum of the nodes’ degrees:

E
0

1

drK~r ,t !52mt. ~10!

This equation can be numerically shown to yielda
51.3837. The ansatz onA(r t ,t) is verified in simulations of
the model, as shown in Fig. 3

Following Ref.@14#, the time evolution of the individua
degrees allows us to compute their statistical distribut
P(k); we obtain

P~k!5
1

kE0

1

drS k

2D 2B(r )

B~r !, ~11!

whereB(r )5(2/r )@12(r a/11a)#, which displays a power-
law behavior for largek. We can estimate the power-la
exponent of the degree distributionP(k) finding upper and
lower bounds for its integral expression. Indeed, we find t

F~r !5e22 ln(k/2)B(r )B~r ! ~12!

is such that the integrand is monotonically growing. The
fore it is easily seen that

P~k!,
1

k
e22 ln(k/2)B(1)B~1!;k2(3a11)/(a11). ~13!

As for the lower bound, we first observe that the integrand
monotonically increasing, with positive second derivativ
So,

F1~r !5F~1!2F8~1!~12r ! ~14!

FIG. 3. Degree of PDF in our network model made of 14

nodes, withm52. Plus symbols refer to numerical simulation. T
solid line is obtained by plotting Eq.~11!. The dashed line is pro
portional tok22.16. Inset: the function@A(x,t)#/(2mt) plotted for
t5104 andm52. The dashed line representsx1.38, displayed here
to check the validity of our ansatz.
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is such thatF1(r ),F(r ) for 0<r<1. Then if we extend the
integral fromr 1 @F1(r 1)50# to 1, we surely find an under
estimation forP(k). In particular we find

P~k!.k2(3a11)/(a11)
1

2a

a11
ln~k/2!21

. ~15!

The asymptotic behavior ofP(k) is thereforek2(3a11)(a11)

with at most logarithmic corrections.
We numerically checked thatP(k) is a power law with a

rather weak correction that slows down the decay, as
played in Fig. 3. Neglecting the correction, the best appro
mating exponent of the probability density function~PDF! is
about 22.16, which confirms the above computation. I
deed, we have (3a11)/(a11)52.16. This value, more-
over, is close to the exponents measured in real netwo
which lie in the range 2–2.4.

In the simulation of the model,knn(k) and ck have also
been numerically investigated. Unfortunately, we could n
find an analytical description of these two quantities. As
quired by real data,knn(k) and ck decay algebraically with
respect tok. For the nearest-neighbors degree, we appro
mately measuredknn(k).k20.57, as shown in Fig. 1. The
value of the exponent agrees with the measurement repo
in Refs. @6,7#, which yields knn(k).k2nk with nk50.5
60.1. As for the clustering coefficientck , simulations re-
ported in Fig. 2 show thatck.k20.72. The same relation
measured in Refs.@6,7#, in the IAS networks case, readsck
.k2v with v50.7560.03.

The qualitative behavior of these quantities is reprodu
in our extremely simple model. As a comparison, let us rec
that, without an intrinsic relevance, a simple growing n
work model with preferential attachment shows no corre
tion between the degrees of two linked nodes. In addition
this model the clustering coefficient around a node does
depend on the degree of the node@7,9#. An improvement in
approximating real data could be achieved by adding ot
microscopic interactions to the dynamics of our toy mod
such as rewiring and elimination and links, or by mergi
nodes, as already done in former works@15–17# in the search
for a better approximation of the scale-free degree distri
tion.

We believe that our analysis has pointed out some
structural features of social networks, by the observation
the correlation and the clustering of the connectivity in n
works. In particular, the nontrivial behavior of the neare
neighbor average degree and of the connectivity coeffic
have been measured in some real examples. We also
vided a toy model of a growing network with preferenti
attachment, where nodes only connect to more relevant o
We have shown numerically and analytically, as far as
could, that our model reproduces to a good approximat
the statistical properties of real networks, including the c
relations in the connectivity. We believe that this approa
suggests new empirical measurements to be carried ou
real networks, and that new ingredients and further analyt
steps are needed toward the comprehension of these com
systems.
1-3
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